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Abstract—In the paper we present an algorithm called GameR-
ank, modified from Pagerank and HITS, to evaluate the pitching
and batting ability for players in Major League Baseball (MLB)
with a network perspective. The model could also be easily
expanded and applied on any network that has multiple factors
interacting with each other, to quantify the vertex’s significance.
Then, we evaluate the algorithm by comparing its results to
ESPN Ratings, a popular baseball rating method. Our algorithm
achieves similar or better results with a way simpler model.
Furthermore, relevant analysis is also performed for our MLB
data network, with a few interesting conclusions drawn, like
(a) players are getting closer in their skills; (b) good pitchers
bats better than normal ones.What’s more, we have wrapped up
the whole system as a working website, called MLB Illustrator
(http://mlbillustrator.com), to let users interact with the data and
network itself, making the traditional baseball statistics analysis
based on tables and simple graphs evolve into intuitive visualized
network analysis. At last, we present a series of examples where
GameRank model can be used, to prove that our model is
extensive and widely applicable.

Our contribution lies in the following aspects: (a) we provide
a simple model to rank the nodes in networks with multiple
indicators interplaying with each other, which expands the
functionality of PageRank, and is widely applicable; (b) we
initially apply the network theory on the baseball network, handle
a set of analysis on it, and have some interesting findings; (c)
we provide a powerful method to rank baseball players which is
stronger than ESPN Ratings in several aspects.

Index Terms—Social Networks, Ranking, Data Mining, Base-
ball, Algorithm

I. INTRODUCTION

Major League Baseball [1], or MLB, is the professional

baseball league consisting of American League and National

League. It has the most attendance of any sports league with

more than 70,000,000 fans. Baseball being one of the most

popular sports in the States, the statistics analysis of its games

and professional players has always been of great interest.

Among researchers, previous works are mainly focusing on

analyzing baseball videos [2], [3], and there are seldom works

on ranking players and analysis of baseball network.
Our data is parsed from Retrosheet.org [4], which keeps

a complete record of play-by-play game data from 1930s to

2010s in a structured form. Due to the complex set of rules

of baseball game, it has a rather sophisticated way of keeping

score and game situation, and much effort is needed when

trying to find out the general performance of any team or

player. From the dataset we parse each play into a win-lose

relationship between two players: the batter and the pitcher.
While PageRank [5] can be applied for ranking the teams

based on the game results, valuable players can’t be accurately

tracked, because players have multiple abilities, such as ability

to hit, to pitch, to run, and to field (catch balls). To better

evaluate players, we’ve come up with a novel approach,

inspired by PageRank and HITS [6], to iteratively measure

the performance of the given individual. The algorithm aims

at measuring the pitching and batting ability for each player. It

assigns each individual GameRank (GR) values to represent

his pitching / batting ability, and use multiple random walk

models to iteratively accumulate the GR value. The results of

GameRank, its evaluation, along with other analysis results,

will also be shown.

The rest of our paper is arranged as following. Section II

gives a more detailed description of GameRank, explains how

it can be mapped into a random walk model, how it can be

computed, and proves its convergence properties. Section III

evaluate the GameRank algorithm, compare it with a popular

ranking method—ESPN Ratings, and prove that GameRank

achieves similar or better results with ESPN Ratings with

a simpler and more natural model. Section IV presents the

specific analysis of our MLB data set network, illustrates

its structure, basic attributes and evolution over time, and

shows a few interesting results. Section V introduces our

product—MLB illustrator, to visualize the baseball network

according to GameRank, which gives a better view of the

relationships among players and illustrates GameRank values

to provide further analysis. Section VI gives some examples

that GameRank is applicable, to support that this model can

be widely used and easily expanded. In Section VII we

propose future works, and finally in Section VIII we make

a conclusion.

II. ALGORITHM: GAMERANK

A. Introduction and Motivation

Each player, in a baseball game, has multiple abilities

such as batting, pitching, fielding and running. Batting and

pitching abilities are what people care the most, and we aim

to evaluate these two qualities of baseball players. These

two ability cannot be evaluated independently: a good hitter

sometimes achieve a home run facing a great pitcher, and a

good pitcher sometimes strikes out a great batter. Most pitchers

also have the ability to bat, and some of them are even very

good at batting. In this way, simple PageRank is unable to

capture such a network’s feature with the two abilities, since

only one indicator PR is calculated. If we use PageRank

separately for pitching and batting abilities on two networks

Gbatting, Gpitching , we cannot describe the interplay within

the two factors; if we do not separate batting and pitching

abilities, but only compute PageRank on the network where

2012 ASE International Conference on Social Informatics (SocialInformatics 2012) / 2012 ASE International Conference on Cyber

Security (CyberSecurity 2012) / 2012 ASE International Conference on BioMedical Computing

978-0-7695-4938-5/12 $26.00 © 2012 IEEE

DOI 10.1109/SocialInformatics.2012.21

244



edges stand for win-lose conditions, we can only get a coarse

significance of all players, which is unnatural and inaccurate.

Our assumptions in the baseball network are: (a) a player

is good at batting if he wins over good pitchers; (b) a player

is good at pitching if he wins over good batters.

This model is quite similar to hubs and authorities [7],

which is the abstraction of Web presented by HITS algorithm:

good hubs link to good authorities, and good authorities are

linked by good hubs. Although HITS does not perform well

in the context of Web, this intuition fits in well in the baseball

network.

To iteratively calculate each player’s ability, a random walk

model is applied to obtain the stationary distribution of the

player’s pitching and batting abilities, i.e. GameRank values.

One of the strength of the random walk is that it provides a

good probabilistic meaning for the algorithm, and fits in well

with our assumption. Detailed description of the random walk

model is stated in the following subsection.

B. Intuition: Random Walk

GameRank can be seen as two random walk models inter-

acting with each other. The following example illustrates the

intuition behind GameRank, which is exactly the same process

as the algorithm we will present later.

Say, Ellie, a big fan of MLB, has all the games’ data

recorded in pieces of “nice plays”. A nice play from i to j
is defined as one play in the game that pitcher i wins over

batter j, or batter i wins over pitcher j. Ellie wants to find

out who is the best player of the year, so she randomly starts

from a batter A, and randomly picks a nice play that pitcher

B defeats A. Then she look over B’s data and picks a nice

play that a batter C defeats B. As she continues this never-

ending game, after a sufficiently long time, the probability that

she is watching the play of a batter x, called GRB(x); or of

a pitcher x, called GRP (x), represents x’s batting (pitching)

ability.

Considering that there might be a batter i is so lucky that no

pitcher wins over him throughout the year, or vise versa when i
is a pitcher. If Ellie gets to batter (pitcher) i, she will randomly

pick a pitcher (batter) from all the players, and restart her

journey.

Also, Ellie sometimes (with a probability β) gets bored

when watching plays of batter (pitcher) i, and directly jump

to a random pitcher (batter) j to look for some surprise.

In this process, the more nice plays x has, the higher

possibility x is visited, thus gaining the higher GR values.

If x is a batter and he defeats many pitchers with high GRP ,

then his GRB will be high; if x is a pitcher and he defeats

many batters with high GRB, then he will get high GRP .

This is the intuition of our algorithm, and it is in accordance

with our assumption of baseball games.

C. GameRank Definition

The GameRank algorithm is defined as formulas in this

subsection.

Definition 1: In a simple unweighted network, a Batting

Edge from A to B means that A wins over B when A is

batting and B is pitching. Similarly, a Pitching Edge from A

to B means that A wins over B when A is pitching and B is

batting.

N is the number of vertices. DBin(i) is the in-degree of

vertex i when i is batting, i.e. the number of pitching edges

targeting at i. DPin(i) is the in-degree of vertex i when i
is pitching, i.e. the number of batting edges targeting at i.
outlinksP (i) is the set of endpoints of pitching edges starting

from i. outlinksB(i) is the set of endpoints of batting edges

starting from i.

Then Batting Ability is

GRB(i) = β/N − (1− β)
∑

j∈outlinksB(i)

GRP (j)

DPin(j)
, (1)

Pitching Ability is

GRP (i) = β/N − (1− β)
∑

j∈outlinksP (i)

GRB(j)

DBin(j)
, (2)

where β is the damping factor, which equals 0.15 in our

calculation.

In our real case, the edges of the network is weighted. The

weight of edges indicates the significance of the edge. Similar

to weighted PageRanks, we revise the GameRank algorithm

as the following:

Definition 2: WDBin(i) is the weighted in-degree of ver-

tex i when i is batting, i.e. the number of pitching edges

targeting at i. WDPin(i) is the weighted in-degree of vertex i
when i is pitching, i.e. the number of batting edges targeting at

i. wP (i, j) is the weight of pitching edge from i to j. wB(i, j)
is the weight of batting edge from i to j.

Then Batting Ability is

GRB(i) = β/N − (1− β)
∑

j∈outlinksB(i)

wB(i, j)GRP (j)

WDPin(j)
,

(3)

Pitching Ability is

GRP (i) = β/N − (1− β)
∑

j∈outlinksP (i)

wP (i, j)GRB(j)

WDBin(j)
,

(4)

GRB and GRP values describe the batting and pitching

abilities of players. With these values, we can rank the players

by batting and pitching abilities separately, thus got GR batting
rank and GR pitching rank.

D. Computation

With N vertices in the network, we first assign 1/N as the

initial GameRank, and makes sure GR values sum up to 1.

Then iteratively, using the formula (3) and (4), we collect the

GR values of each vertex. The process is repeated until GR

values converges to the stationary distribution.

To make our rankings more accurate, we set different

weights for various type of edges. The weights of edges

indicate the significance of the edge, or how nice the play

245



TABLE I
WEIGHT FOR DIFFERENT KINDS OF EDGES

Edge Class Edge Type Weight
Batting Single Base 1
Batting Double Base 2
Batting Triple Base 3
Batting Home Run 4
Batting Sacrifice Hit 0.5
Batting Walk / Base-on balls 0.5
Batting Others 0.5

Pitching All 1

is. According to our algorithm, higher edge weights will

contribute more in the computation of GR values.

We define “Edge class” as pitching or batting edge accord-

ing to the source of the edge, i.e. a pitcher wining over a

batter is mapped into a pitching edge. In real baseball games,

the nice plays are not merely win-lose conditions, but a various

types such as Single Base (1B), Home Run(HR), Sacrifice Hit,

Walk, etc. In the table I, we specify how we assign a weight

according to the type of edges. For simplification, we assume

that the value of base-hits (1B, 2B, 3B, HR) are proportional

to the bases the batter run, so we assign weights equal to the

number of bases, i.e. 1, 2, 3 and 4. Other types of battings

like Sacrifice Hit and Walk, are assigned a 0.5.

Different edge types have different weights, since we think

when batter i faces pitcher j, a home run might contribute

more than a single base to evaluating i’s batting ability.

The weight can be adjusted freely, and cause different

results. We picked basic and intuitive weights, to prove that

this model is effective and improvable. By picking a set of

weights with more professional knowledge, we can make the

algorithm more accurate.

This computation can be easily parallelized, using the same

metrics of PageRank. It can be calculated in a method of

MapReduce model [8], which is applicable for large scale

networks.

E. Convergence Properties

It happens that some vertices have no in-links, as no one can

beat him in batting or pitching, in turn making the network not

connected. And even worse, it will lead to non-convergence

of the GR network, where these vertices serve as absorbing

states. To deal with it, we choose to add the damping factor β
to allow random victory. With these miracle links, the network

become connected without dangling nodes hanging around,

and stationary distribution could be obtained.

For simple illustration of convergence, we first take a look

at the convergence proof of the original PageRank. Let πT be

the 1 ∗ n PageRank row vector, we can describe the iteration

at the k − th step as

π(k+1)T = πkTH

where H is the row-normalized adjacency matrix.

To ensure stochasticity, H should be of non-negative ele-

ments and every row in it should sum to one, yet by definition

there could be rows summing up to zero. We define stochastic

H = H + aeT

n , where ai = 1 is a column vector if∑n
k=1 Hik = 0 and ai = 0 otherwise, e is the unit column

vector.

To guarantee there exists unique stationary distribution

vector πT , H should be irreducible, which happens if and

only if the corresponding graph is strongly connected [9].

This is where damping factor β comes in. With 0 ≤ β ≤ 1
and E = eeT /n, we get irreducible, row-stochastic matrix

H = βH + (1 − β)E. Then we can rewrite the iteration

equation as

π(k+1)T = πkTH

provided that π will converge to the unique stationary distri-

bution.

Back at GameRank, we build and modify the adjacency

matrices in accordance to that above. The elements are by

definition non-negative and normalized, the dangling nodes

are taken care of to make sure each row sums up to one, and

β make the matrices irreducible. GRB and GRP then, should

converge to their corresponding unique stationary distribution.

III. EVALUATION

In order to evaluate that our GameRank algorithm has good

performance, we conduct a series of experiments.

A. ESPN Ratings

Firstly, we want to prove that GameRank algorithm achieves

at least the similar effect with a well-recognized and presti-

gious ranking method, ESPN Ratings [10], and the GameRank

model is simpler, and in some aspects stronger, than ESPN

Ratings.

ESPN Ratings is defined by Jeff Bennett in the official

site of ESPN. In its algorithm, batters, starting pitchers and

relief pitchers are separated into different ranking groups.

For each group, it calculates the weighted average of all the

factors as a single score to describe the players’ value. As

an example, the ESPN rating of batters are calculated by

gathering the following factors: batting bases accumulated,

runs produced, OBP, BA, HRs, RBIs, runs, hits, net steals,

team win percentage, difficulty of defensive position, etc. It

includes more than 10 factors. Both of the other groups also

include more than 5 factors.

The calculation of ESPN Ratings involves computing the

weighted average of many statistics of players. Its algorithm

is only a simple sum-up to a bunch of indicators, which

makes it very complex and unnatural. In addition, none of

those indicators can take the detailed relationships among

players into consideration. Furthermore, it separates pitchers

with batters, thus cannot compare pitchers’ and batters’ batting

abilities. What is worse, a lot of players fail to get a score

according to the algorithm, thus a large number of players

accounting for more than 60% cannot get a rank, while our

GR algorithm can rank all the players according to game data.

Compared to ESPN Ratings, our algorithm is simpler, more

natural, capable to compare pitchers and batters in terms of

batting ability, and covers a larger majority.
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B. Comparing GameRank and ESPN Ratings
We pick the match data of all the teams in 2011, as it is

the most recent and complete in Retrosheet, and official ratings

can also be found in ESPN. We calculate the GameRank values

for all the players according to the match data in 2011, and get

GR values for 1295 players. Then we collect the ESPN Ratings

for pitchers and batters, which only involves 161 pitchers and

310 batters.
Then we analyze the players who have ESPN Ratings,

and rank them according to both GR values and ESPN

Ratings, then compare their GR ranks and ESPN ranks. To

be specific, we normalize GR and ESPN rank by selecting the

players whose GameRank values and ESPN Ratings are both

provided. Actually, all the players who have ESPN Ratings

also have their GR values calculated, so the selected set

includes 161 pitchers and 310 batters. We separately sort all

the selected pitchers and batters by their GR values, and the

order is GRrank; similarly we sort the players by ESPN rat-

ings and get ESPNrank. Therein, both GRPitchingRank
and ESPNPitchingRank have a range [1, 161], and both

GRBattingRank and ESPNBattingRank are ranged in

[1, 310]. So GR and ESPN ranks can be compared.
First, we plot the scatter diagram of GRrank −

ESPNrank, arranged by GRrank. Figure 1(a) for batting,

and figure 1(b) for pitching. The value is a indicator of a

certain player how close the two ranks are.
Then we plot Cumulative Distribution Functions (CDFs)

to see the distribution of absolute difference values, figure

1(c) for batting, figure 1(d) for pitching. The horizontal axis

refers to |GRrank−ESPNrank|, and the vertical axis is its

cumulative function, i.e. how many users have the difference

below this value. The difference value shows the closeness of

the two ranks.
From the plot we can see that, for 50% batters, the dif-

ference between their GR rank and ESPN rank is less than

37; for 80% batters, the difference is less than 85. For 50%

pitchers, the difference is less than 40; for 80% pitchers, the

difference is less than 81. A smaller difference demonstrates

a better similarity of GR rank and ESPN rank. As the range

of pitching rank is [1, 161] while the range of batting rank

is [1, 310], it comes out that the GR ranks are more close to

ESPN ranks in terms of batting than pitching.
To provide some specific statistics, the top 10 batters and

pitchers or the year 2011 according to GR ranks are listed in

the table II and table III, with comparison to the ESPN ranks.

From these tables, we can also confirm that the difference

between our rankings and ESPN rankings are small, and they

are more close in terms of batting than pitching, which is in

accordance with the above results.
Secondly, we want to prove that GameRank algorithm is

in some way more persuasive than ESPN Ratings, in an

experimental approach. As ranking the players is quite a

subjective procedure, there is no definite criteria to judge

which ranking method is better. However, we come up with

a intuitional assumption: players with better rankings should

have higher probability to win in games.

TABLE II
TOP-10 BATTERS

Name GR Rank ESPN Rank
Matt Kemp 1 1

Prince Fielder 2 6
Justin Upton 3 17

Hunter Pence 4 21
Ryan Braun 5 2

Joey Votto 6 8
Albert Pujols 7 12

Adrian Gonzalez 8 5
Jacoby Ellsbury 9 3

Jose Bautista 10 7

TABLE III
TOP-10 PITCHERS

Name GR Rank ESPN Rank
Cliff Lee 1 4

Matt Cain 2 18
Clayton Kershaw 3 1

Daniel Hudson 5 38
Roy Halladay 6 3

Tim Lincecum 7 17
Ian Kennedy 8 9
Tim Hudson 9 23

James Shields 10 7

With this assumption, we plot two figures visualizing the

frequency for pitchers at different rank levels to win over

batters at different rank levels. Figure 1(e) for GR ranks, and

figure 1(f) for ESPN ranks. In these figures, the horizontal

axis refers to batters, and the vertical axis refers to pitchers at

different levels in the according ranking algorithm. The maps

are cut into grids for every 10 pitchers and every 20 batters,

and the color of grids refers to average frequency for pitchers

at specific rank levels to win over batters at specific rank

levels. The redder, the higher frequency for pitchers to win.

In specific, for each grid with the left-bottom corner at point

(x, y), the color of that grid refers to the average frequency

for pitchers with rank in (10× (y−1), 10× (y)] to win batters

with rank in (20× (x− 1), 20× (x)].
Based on the assumption, the figures show that GR ranks

are better than ESPN ranks in terms of batters: When x-

axis is growing which means pitchers meets “weaker” batters,

the frequency for pitchers to win gets more obviously higher

in GR ranks than in ESPN ranks. However, the GR ranks

for pitchers do not seem to have good patterns. Probably

we can say that we achieve better rankings for batters using

GameRank, but for pitchers it is still hard to make such a

conclusion.

According to the above comparison, we find that GameRank

algorithm is quite effective in the following ways: (a) it

achieves at least similar results with ESPN rankings, and it is

even better in terms of batting rankings if we set the criteria

as wining frequency. (b) What is more, it is such a simple

model that only uses win-lose relationships between batters

and pitchers in games, featuring a perspective of networks.

(c) At last, it can give rankings to all the players as long as

they are in the network, while ESPN Ratings only have a small

rated set of 161 pitchers and 310 batters.
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(a) Batting Rank Difference: Scatter Diagram
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(b) Pitching Rank Difference: Scatter Diagram
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(c) Batting Rank Difference: CDF
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(d) Pitching Rank Difference: CDF
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(e) Frequency for pitchers to win batters at different
rank levels in GameRank. Pitcher ranks are divided
by 10; batter ranks are divided by 20.
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Fig. 1. Comparison between GR and ESPN rankings

GameRank can be made more precise if we dig into the edge

weights: how much is the weight for Home Runs, Sacrifice

Flys, and Walks? What if we consider more complicated and

various situations in baseball games? By customizing weights

of different kind of edges, we can easily extend this method,

and make it more powerful at ranking baseball players.

IV. DATA ANALYSIS

Then we handled analysis with the calculated GRrank, and

some interesting results are found in the baseball network: (a)

By studying its out-degree distribution in different years, we

found that recent players are getting closer in their skills than

before. (b) By analyzing the pitchers’ batting ability, we found

that good pitchers are better than normal pitchers at batting.

A. Out-degree Distribution Analysis

First, we calculated the out-degree distribution of the player

network, and recorded a few years’ for reference. The out-

degree is defined as the total number of outlinks, including

both pitching and batting edges, indicating the total numbers

of nice plays a player achieves inside a year.

In figure 2 is the CDF of the out-degree distribution of all

player throughout the year of 1950, 1960, 1970, 1980, 1990,

2000 and 2010 respectively.

We see from the figure that the out-degree distribution is

almost linear, which indicates that the number of players in

different levels are similar. The number of nodes and edges

of the network, according to statistics not shown, has been

ever-increasing over time. Despite of this, we see that the
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Fig. 2. Players’ out-degree distribution of historical years

out-degree distribution has been changing: transformed into a

probability density distribution, the tail is getting shorter, and

the head is getting smaller. This illustrates the fact that there

used to be only a few elite players dominating the game—with

a lot of nice plays (higher out-degree), but now there are more

players contributing edges targeted at others, i.e. contributing

nice plays. As the time goes by, the long tail is slowly but

surely disappearing, i.e. players are gradually getting closer in

skills.

B. Pitcher’s Batting Ability Analysis

As we know, pitchers also have batting ability, some of

which bats well. We pick all the 660 pitchers, who have
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Fig. 3. Pitcher’s batting ranks

TABLE IV
BOTTOM PITCHERS WHO ARE GREAT BATTERS

Name Batting Rank Pitching Rank
Wilson Valdez 246 648

Michael Cuddyer 106 652
Darnell McDonald 377 654

Skip Schumaker 222 655
Bryan Petersen 296 656

Mike McCoy 381 657
Mitch Maier 447 658

pitching ability in the year 2011 in all leagues. For them, both

GRP and GRB are meaningful. We plot their pitching ranks

and batting ranks in one scatter diagram in figure 3, and find

something interesting.

As the figure shows, among all the pitchers, there is a trend

that “better pitchers bat better”. This might be opposite to

someone’s intuition that great pitchers put all their minds in

developing their pitching skills, and thus fall behind others on

batting. Actually, the statistics indicates that good pitchers are

usually more talented or well-trained than normal pitchers, not

only in pitching, but also in batting.

Another interesting thing in this figure is that among the

bottom pitchers, there are 7 pitchers who bats really well:

their pitching ranks are behind 640, but their batting ranks are

before 450, some of which even rank about 100, which is far

better at batting than any other pitcher in the leagues. We pick

them up and list them in table IV.

We manually check these players, and found that most of

them do not take pitchers as their major fielding positions.

Although they have the ability to pitch, and they all once

pitched in 2011 regular season, they are actually better at

batting, and usually do not pitch.

V. VISUALIZATION: MLB ILLUSTRATOR

We build an online system to visualize and rank all the MLB

data from 1930 to 2011, including ranking teams, ranking

players in one team, and ranking all the players in one year.

Our ranking system uses the algorithm of GameRank.

The contribution of our visualization tool is: (a) providing a

perspective of network to display the baseball statistics rather

than the traditional tables of statistics, leading a prospective

new trend of baseball game analysis; (b) helping potential fur-

ther analysis of baseball network, by presenting a straightfor-

ward view of GameRank values and the relationships among

pitchers and batters.

The website of our system is: mlbillustrator.com [11].

Our website is built upon the visualization toolkit D3.js [12],

jQuery [13], and basic javascript and html.

A. Definition

In our visualization, Nodes are players. Bigger nodes are

stronger players. Nodes with same color inside are in the same

team. Nodes with black border are pitchers, with white border

do not pitch.

Edges are plays, i.e. winning relationship between two play-

ers. Color of edges indicates the kind of a play: a successful

defense (blue) or attack (yellow). If a batter makes a hit or

other successful attacks, then he initiates a yellow (attack)

link towards the rival pitcher. If a pitcher strikes out a batter

or leads his team to a successful defense, then he initiates a

blue (defense) link towards the rival batter. Nicer plays lead to

thicker links, and multiple thin links will aggregate to a thick

one.

And users can easily interact with the system according to

the manuals on the website.

B. Ranking and visualization

The current system provides three ranking systems: (1)

Player Rank by Team ranks the player using all the games

played by a certain team during one year. (2) Player Rank by

All Teams ranks the player using the data of all games of that

year. (3) Team Rank uses the game data of the whole year to

rank every team.

First two player rank systems have two metrics: players can

be ranked by their GameRank value, or simply by their out-

degree. Team rank uses the team’s PageRank value, modified

to adjust to the MLB network.

For ranking player by team, the user can choose year, team

and ranking metric. The network of your choice will be shown

automatically in the central part of the window. By using this

function, we can easily see who are the core players in each

team. Figure 4(a) shows an example of Chicago White Sox,

in 2009.

In figure 4(b) is the similar interface for ranking players by

all teams. The notation are all the same, and it is easy to find

out from the network the most significant player and his team.

In figure 4(c), it shows that when you click a node, it will

only show itself and its neighbors, and make the others opaque.

C. Analysis based on visualization

We handle some simple analysis based on our visualization

system. We take the all-teams-in-one-year network, like in

figure 4(b), and find that in every year, the network consists

of two large communities. The layout is force-driven layout

provided by D3 library, and this result shows that the links

within each community are dense, while links between two

communities are sparse.
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(a) Ranking Player by Team, 2009, Chicago White
Sox with GameRank

(b) Ranking Player by ALL Teams, 2005 with
GameRank

(c) A node and its neighbors in the network

Fig. 4. Ranking and visualization by MLBillustrator

Why does this happen? We found that in MLB there is

American League (AL) and National League (NL), and the

two clusters are almost exactly AL and NL communities. The

effect is because both AL and NL play more inside themselves,

but less across leagues (only in league championship series).

And the players who is the bridge of two communities, like

the selected node in figure 4(c), have links with both leagues.

We manually check some of these nodes, and find that all

of them used to change their teams across the league during

the year. For example, Dan Haren was traded from Arizona

Diamondbacks (NL) to Anaheim Angels (AL) in 2010, thus

he is a bridge in the layout of 2010.

VI. OTHER USE CASES

It turns out that GameRank is a simple, effective algorithm,

which fits in the situation where there are multiple interplaying

factors.

In this section, we provide some other use cases that

GameRank is also applicable.

A. Football Network

In Football, each player has attacking and defending ability.

Nice forwards are usually good at attacking, backfielders are

good at defending, and midfielders might be good at both

attacking and defending.

The assumption is that: if a player often beats rivals who

are good at defending when he is attacking, then he is a

good attacker. In the contrary, if he successfully defends good

attackers, then he is a good defender.

Each player has two GameRanks: attacking and defending.

Definition 3: An Attacking Edge from A to B means A

wins over B when A is attacking and B is defending. Similarly,

a Defending Edge from A to B means A wins over B when A

is defending and B is attacking. N is the number of vertices.

DAin(i) is the in-degree of vertex i when i is attacking, i.e.

the number of defending edges targeting at i. DDin(i) is the

in-degree of vertex i when i is defending, i.e. the number

of attacking edges targeting at i. outlinksD(i) is the set of

endpoints of defending edges starting from i. outlinksA(i) is

the set of endpoints of attacking edges starting from i.

Then Attacking Ability is

GRA(i) = β/N − (1− β)
∑

j∈outlinksA(i)

GRD(j)

DDin(j)
, (5)

Defending Ability is

GRD(i) = β/N − (1− β)
∑

j∈outlinksD(i)

GRA(j)

DAin(j)
, (6)

where β is the damping factor.

By calculating the GameRanks, we can measure the attack-

ing and defending abilities for all football players.

B. Network with three interplaying factors

Imagine there is a network in which nodes have three

attributes A, B and C, and there are three types of edges:

< A,B >, < B,C > and < C,A >, using different attributes

of nodes. In this network, if node X point to (wins) node

Y through an < A,B > edge, then the attribute B of Y

contributes to A of X, and similar rules are adopted with the

other types of edges: wining higher C leads to higher B, and

wining higher A leads to higher C, through accordant edge

types.

In this network, each node can have three GameRanks for

A, B and C. outlinksA(i) is the set of endpoints of < A,B >
edges starting from i. outlinksB(i) is the set of endpoints of

< B,C > edges starting from i. outlinksC(i) is the set of

endpoints of < C,A > edges starting from i. DAin(i) is the

in-degree of i when counting < C,A > edges. DBin(i) is the

in-degree of i when counting < A,B > edges. DCin(i) is the

in-degree of i when counting < B,C > edges. And the three

abilities can be quantified like:

GRA(i) = β/N − (1− β)
∑

j∈outlinksA(i)

GRB(j)/DBin(j),
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GRB(i) = β/N − (1− β)
∑

j∈outlinksB(i)

GRC(j)/DCin(j),

GRC(i) = β/N − (1− β)
∑

j∈outlinksC(i)

GRA(j)/DAin(j),

where β is the damping factor, and j is in the corresponding

set of endpoints.

This example shows a case where GameRank algorithm

can be extended to fit in networks with multiple interplaying

indicators.

VII. FUTURE WORK

With the dataset and the visualization system, we might

handle further measurements on the baseball network.

First, we can test the robustness of each team based on the

knowledge of network resilience. For each team a network

can be built: the nodes are the players, the directed edges

from A to B indicates that A gives a support to B when A is

batting. And we can analyze this network for each team. If it

is a highly-centralized network, it shows that the team is too

dependent on certain players, and it will be dangerous for the

team to lose him. Otherwise if the network is robust, we can

say that the team has many good players and is stable.

Second, we can dig into some interesting facts: which

players have a high GR but do not play much? they might

be unfairly treated, or they are not endurable to play many

games. Which players have a high GR but a low salary? He

might be bought in a low price, and that can be a good bargain.

Which pitchers are the toughest to the players in one team?

He might not be a top pitcher, but he keeps winning you every

time, and your team should be cautious about him.

Moreover, we can use specific knowledge in baseball games

to optimize our algorithm, such as dividing starting pitchers

and relievers, and selecting precise edge weights. We can also

try to predict the result of certain games by a comprehensive

study of the network.

VIII. CONCLUSION

In this paper we present a novel approach to analyze

the complex statistics of MLB data, that is, to transform

the data from simple numbers and situations into a network

with multiple indicators interplaying with each other. And in

such network, GameRank algorithm is introduced as a simple

and effective approach to evaluate individual players in the

league. Modified from PageRank and HITS, it takes a player’s

performance into consideration as a probability estimation

problem and models up the problem as a Markov process with

a twist.

We evaluate the GameRank algorithm by comparing its

results and rankings according to ESPN Ratings, a famous and

well-recognized approach to rate baseball players. The result

shows that our model is excellent in the following aspects:

first, we get the similar results with ESPN ranks, if not better.

Second, our method only use a simple model which only

needs the win-lose relationships in plays, which is far more

independent than ESPN Ratings. Third, our method is capable

of calculating every player’s rankings, while in ESPN more

than half of players will not get a score so that they cannot be

ranked. Fourth, our method is capable to join the pitchers with

batters and compare their batting ability, while ESPN Ratings

fail to do so.

Besides, other popular network analysis techniques are also

applied on both team and individual in the baseball game. We

calculate the out-degree distribution of the network for all the

past years, and find that the head is getting smaller and the tail

is shorter, indicating that recent players are getting closer in

their skills than before. We discuss the pitcher’s batting ability,

and find that good pitchers are better than normal pitchers at

batting.

Then, we provide a visualization system as our product,

MLB illustrator featuring GameRank on-line calculations.

With this working system out on the street for users to interact

with the data, more interesting patterns and knowledge are

there to be discovered.

At last, we give some cases that GameRank can also

be applied, to demonstrate that this model is flexible and

applicable for any network featuring multiple interplaying

indicators.
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