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Abstract
We develop a scalable decoding system DeepSpeech, which

flexibly integrates different levels of knowledge to decode a word
lattice in speech recognition within a word-level CRF model.

DeepSpeech facilitates feature extraction, factor graph gen-
eration, and statistical learning and inference. It takes word
lattice as input, perform feature extraction specified by devel-
opers, generate factor graphs based on descriptive rules, and
perform learning and inference automatically. DeepSpeech is
based on the scalable statistical inference engine DeepDive
(http://deepdive.stanford.edu).

We integrate N-gram based linguistic features as well as
some domain specific features. We train and evaluate our system
on a dataset of broadcast news lattices, and obtain WER of
10.2%, which beats the baseline (Attila system) by a large margin.
We also study a larger set of linguistic features with DeepSpeech
and report their impact.
Index Terms: language model, advanced decoding

1. Introduction
1.1. Motivation

Speech recognition has been suffering from bad independence
assumptions across different phases. Acoustic models are trained
without syntactic and semantic knowledge beyond words, thus
underestimated probabilities of correct words are hard to be
captured by subsequent naive language models. We believe that
eventually, joint inference on acoustic and language models is an
especially promising future. As a first step towards this goal, we
concentrate on advanced decoding in the language model phase.
We propose to integrate more knowledge in decoding the word
lattice, with the help of joint inference.

For state-of-the-art decoding approaches, it is hard to in-
tegrate sophisticated knowledge because of scalability reasons.
However, with the cutting-edge researches on graph learning and
sampling, we are now able to perform massive learning with a
speed of millions of variables per second [9]. Weaponed with
this, we use general factor graphs to do learning and inference
on word lattices, which is able to integrate different kinds of
knowledge including syntactic, semantic, context and higher-
level knowledge.

Specifically, this paper tries to answer following questions:

1. How to jointly integrate different levels of knowledge in
speech recognition?

2. Is it possible to have a real-time decoding system that
approach oracle error rate of word lattices?

3. How to engineer the high-level features for language mod-
els in real-time ASR applications within current technol-
ogy?
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Figure 1: A Sample Factor Graph in DeepSpeech CRF Model

1.2. Previous Works

Previous works on integrating knowledge into speech recognition
include different models: HMMs [2], Segmental CRFs [10], and
Deep Neural Networks [3, 4]. Most works separate acoustic and
language models, and it is hard for those works that focus on
acoustic models to integrate higher-level language than lexicons.
Most previous works on advanced decoding try to combine
acoustic and language models by rescoring, without a rigorous
probabilistic framework.

SCARF [10] is a platform that utilizes segmental conditional
random fields. It provides a framework for developers to add
their own linguistic features. However, the scalability of SCARF
is questionable while it does not claim to be able to do real-time
speech recognition.

1.3. Our approach

We propose a decoding system based on word-level Conditional
Random Fields (CRFs) that is able to integrate various linguistic
and domain-specific features.

CRFs are a type of general factor graphs. In our factor graph
model, each variable is a word candidate in the lattice, and each
factor is a feature or a domain-specific rule.

An example factor graph is shown in Figure 1. In this exam-
ple, “was returned to us” and “was return to ice” are two different
paths in the lattice. Each word in the lattice corresponds to a
variable (shown as circles), and different factors might connect
to them (shown as rectangles).

We obtain labels for variable-level training data by distant
supervision: we match each lattice with its corresponding tran-
script, find all best paths in the lattice, and label all words on
the best paths that matches a word in the transcript as true, other
words as false.

As shown in Figure 1, the features we present in our sys-
tem are such as: (1) word N-gram frequency; (2) bag of word
N-grams (each N-gram itself is a feature); (3) a second “confir-



matory” decoding made with an independent speech recognizer
(which comes with the lattice data); (4) words around silence,
etc.

DeepSpeech also enables developers to plug in more compli-
cated features such as dependency paths, co-references, speaker-
specific and contextual features.

1.4. Results

We got WER 10.2% on 152,251 broadcast news lattices with a
simple feature set. (baseline 22.9%, oracle 2.1%) We finished
training and testing in 70 minutes while the whole corpus is 400
hours, which indicates that our approach can be developed into
a system that performs real-time decoding.

1.5. System

We propose to release DeepSpeech system 1 as an open-source
platform for advanced decoding with flexible knowledge integra-
tion. Developers will be able to plug in their own extractors and
apply the system to their own datasets. The system is built on a
scalable inference engine DeepDive [6].

Using DeepSpeech provides following benefits: (1) easy ex-
traction and integration of linguistic features; (2) simpler feature
engineering loops; (3) a rigorous probabilistic framework.

2. Model
2.1. Problem Definition

Our problem is decoding a word lattice into one-best path, which
is defined as follows: given an word lattice as input, which is
a set of possible word sequences, the system outputs a word
sequence with highest confidence.

2.2. Word-level Factor Graphs

We model the decoding problem as a word-level factor graph (a
CRF).

Input to the system is a word lattice, which is a standard
output by an acoustic speech recognition system.

Output of the system is a sequence of words (one-best path)
for each lattice.

Variables are candidate words in the lattice. Among all
variables, query variables are words in the test set, where we are
not sure whether a candidate is correct or not; evidence variables
are words in training set, where we can obtain true / false labels
for each candidate word. After learning and inference, the system
computes marginal probabilities for all query variables, which
we will use to find the best path.

Factors are features or domain-specific rules that are related
to candidate words. For example, the word bigram “of us” might
have a feature indicating that it is a frequent bigram, where “of
ice” might have a feature saying it is infrequent. Factors with
different weights will be connected to the corresponding words.
There might be more complex factors like constraints among
conflicting candidates, chained candidates, coreferences, etc.

2.3. Distant Supervision to Obtain Training Data

On the factor graph we have factors with different weights to be
learned. To train the model we need labeled data for evidence
variables. However, although we have the transcript for each lat-
tice in training set, there is no word-level ground truth indicating

1Currently available at: https://github.com/zifeishan/
cs224s-deepSpeech/
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Figure 2: Distant Supervision

whether each candidate word is correct or not. To get training
labels on a candidate level, we develop a distant supervision [5]
metric to obtain labeled data in this setting.

Given a lattice and its transcript, we: (1) find all optimal
paths in the lattice that matches the transcript with Dynamic
Programming (DP), and (2) then label all matched words in all
optimal paths as true, others as false.

In the distant supervision metric, we maximize the number
of matched words on a path inside the lattice with the transcript.
An alternative would be minimizing edit distance. The difference
between these different objective functions are not studied here.

The distant supervision method is demonstrated in Figure 2.
Specifically, in this lattice, both “WAS RETURN TO US ˜SIL”
and “WAS RETURNED TO ICE ˜SIL” is a best path matching
the transcript “WAS RETURNED TO US ˜SIL”, since both of
them have 4 matches.

As for the DP algorithm, denoting the number of candidates
in lattice as N and number of words in transcript as M, then
each candidate i memorizes a vector with length M, denoted
as f . f [i, j] is candidate i’s maximum score matching up to
transcript’s position j. We perform DP according to the function
below, in a topological ordering:

f [i, j] = max
i′∈Pred(i)

 f [i′, j−1]+1{lattice[i] = transcript[ j]},
f [i′, j],
f [i, j−1]

2.4. Statistical Learning and Inference

After getting the factor graph with evidence, we perform statisti-
cal learning and inference. There are two steps in this procedure:
(1) learning: performs gradient descent to calculate the val-
ues of weights for different factors. (2) inference: performs
gibbs sampling to calculate the marginal probabilities of query
variables. [8]

2.5. Finding Best Path on Factor Graphs

After learning and inference, each candidate word on the lattice
gets a probability of being correct. Therefore the “best path” is
well defined there: we want to find a path that minimizes the edit
distance with the actual word sequence.

Here we formalize this problem: there exists an actual word
sequence C∗ = {a1,a2, ...,an}. Given an arbitrary path in the lat-
tice C = {c1,c2, ...,cn}, we have probabilities for each candidate
to appear in the actual word sequence: p1, p2, ..., pn. We want to
minimize the edit distance of C and C∗, denoted as Dist(C,C∗).

We want to minimize edit distance, which is the total number
of insertions, deletions and substitutions. Consider a case in
Figure 3, where there exists two paths P1 (with nodes SABCT)
and P2 (with nodes SDT) in the lattice. Selecting P1 would
suffer from an expected number of insertions or substitutions
of 0.6, where each of A, B and C contributes 1− 0.8 = 0.2.
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Figure 3: Finding Best Path with Inference Results

Similarly, selecting P2 only gives 0.1 expectation of insertion or
substitution.

Let’s look at expected deletions. Selecting P1 means not
selecting node D, which gives expected number of deletions
to be 0.9 (since D has the probability 0.9 to appear in actual
sequence). Similarly, selecting P2 means not selecting A, B or
C, which gives 0.8∗3 = 2.4 expected deletions.

In this way we can develop a dynamic programming metric
to optimize edit distance. Equivalent to the above problem, we
can add a punishment of -0.5 to each candidate: p′i = pi−0.5,
and select a path that optimizes ∑i p′i.

3. Architecture of DeepSpeech
We develop an end-to-end working system, DeepSpeech, which
implements our data model. The system takes word lattice as
input, performs user-defined feature extraction, factor graph
generation, statistical learning and inference, and outputs the
best path.

DeepSpeech is based on DeepDive [6], a scalable infer-
ence engine that facilitates feature extraction and generates fac-
tor graphs by a descriptive language. DeepDive has a high-
throughput Gibbs sampler DimmWitted [9], which learns and
samples at a speed of about 10 million variables per second on a
laptop for our task.

The system architecture is demonstrated in Figure 4. We
walk through each step of this data flow in this section.

3.1. Data Flow

3.1.1. Data preprocessing

In this step, DeepSpeech takes input data (lattices in raw format),
runs preprocessing scripts on the data and loads them into a
database. It also loads other data needed by the system, including
transcripts for training, Google Ngram statistics, etc.

3.1.2. Feature Extraction

In this step, DeepSpeech extracts linguistic features by running
“extractors” written by developers. Extractors are functionalities
provided by DeepDive.

3.1.3. Factor Graph Generation

In the next step, DeepDive generates a factor graph. To tell the
system how to generate it, developers use a SQL-like declarative
language to specify inference rules, similar to Markov logic
[7]. In inference rules, one can write first-order logic rules with
weights, which intuitively model our confidence in a rule.

3.1.4. Statistical Inference and Learning

This step is automatically performed by DeepDive on the gener-
ated factor graph. In learning, the values of weights specified in
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Figure 4: Architecture of DeepSpeech

inference rules are calculated. In inference, marginal probabili-
ties of variables are computed.

3.1.5. Finding Best Path

After inference, DeepSpeech performs a search for a best path
that optimizes the edit distance, with the algorithm discussed in
Section 2.5. The system then outputs the best path it finds.

3.2. DeepSpeech Features

Our DeepSpeech system provides following benefits, compared
to other systems like SCARF [10].

3.2.1. Easy Extraction and Integration of linguistic features

DeepSpeech provides a framework for developers to extract
and integrate high-level features by writing MapReduce-like
functions in SQL and python. This functionality is provided
by DeepDive’s feature extraction and factor graph generation
frameworks.

3.2.2. Simpler Feature Engineering

Powered by DeepDive, DeepSpeech enables developers to con-
duct systematic feature engineering iteratively. Same as the
“E3-loop” demonstrated in [1], developers go through Explore-
Extract-Evaluate loops to continuously improve the system: (1)
explore results and do error analysis, (2) improve extractors to
get better features, and (3) rerun the system to get new results.

3.2.3. Rigorous Probabilistic Framework

Unlike traditional speech recognition systems that uses ad-hoc
methods to combine the scores given by a language model and
an acoustic model, DeepSpeech provides a rigorous probabilistic
framework: every probability it predicts has the strict proba-
bilistic meaning, which is “the likelihood of the word candidate



to be in the actual word sequence”. The probabilities are well-
calibrated, which means that it is supported by data. With this
probabilistic framework, finding the best-path (or N-best paths)
is straightforward.

4. Experiments
In this section, we report initial experiments we conduct using
DeepSpeech. We train and evaluate the system on a large-scale
dataset, and compare the results with a baseline system and
oracle (lattice optimal) error rate. We further look into the impact
of different features.

4.1. System Evaluation

4.1.1. Datasets

We train and test on broadcast news lattices (LDC2011T06,
152,251 lattices). We holdout 50% of training set for testing.

The oracle error rate (lattice optimal WER) is 2.1% on this
dataset. Our baseline is the one-best word detections from the
Attila system, provided by LDC2011T06 dataset.

4.1.2. Features

After initial feature engineering, we use following features:

1. The “confirmatory” decoding made with an independent
speech recognizer.

2. Unigram and bigram frequency in Google Ngram: For
each candidate word N-gram, we take its frequency (log-
scale) in Google Ngram dataset as a feature that indicates
whether it is a valid word / phrase. We skip disfluencies
such as “um”, “uh” and silence in this feature.

3. Bag of word bigrams. Each bag of bigrams itself is a
different feature (e.g. “we are”, “but uh”). This is a
very sparse feature, but with the large dataset and proper
regularization, it performs well.

4. All words around silence. We take the bigram of a word
and a silence in speech, to capture what words are likely
to come before or after a silence.

4.1.3. Results

We use the standard tool SCLITE for scoring. We evaluate our
system, a baseline system (Attila), and lattice oracle (optimal)
word error rate. The word error rate includes substitutions, dele-
tions and insertions.

The results are shown in Table 4.1.3.

System Corr Sub Del Ins Err S.Err
Baseline 77.8 5.4 16.8 0.6 22.9 96.9
DeepSpeech 92.0 3.6 4.3 2.2 10.2 75.7
Oracle 99.9 0.0 0.1 2.0 2.1 50.8

Table 1: Experiment Results

About performance: DeepSpeech runs 70 minutes for train-
ing and testing, while this dataset is about 400 hours of speech.
This indicates that DeepSpeech can potentially make a real-time
decoding system that integrates high level knowledge “for free”.

4.2. Feature Exploration

In this section, we enumerate a larger set of different features we
implement in DeepDive, and test on each feature’s impact.

For dataset, we use a subsample of the broadcast lattice
dataset. We only takes 1,000 lattices (speeches) and split them
half-half for training and testing.

4.2.1. List of features

Features we implement are listed below. Some are discussed in
the above section while some are newly introduced. Some of
these features are also shown in Figure 1.

1. (Ngram-freq) Google Ngram frequency. (N=1,2,. . . )
2. (confirm) The “confirmatory” decoding made with an

independent speech recognizer, provided by LDC dataset.
3. (start-end) Start and end marks of sentence (<s> and

</s>): each sentence is starting and ending with a spe-
cial mark. We add a factor to a candidate word if it is this
special mark.

4. (Ngram-bag) Bag of word N-grams. Each bag of N-grams
itself is a different feature. (N=1,2)

5. (Ngram-stopword) Any N-gram containing a stop-word
(stopwords include silence). (N=2,3)

6. (Ngram-silence) All words around silence, which is the N-
gram containing a ˜SILmark. (we can see that 7∈ 6∈ 5)
(N=2)

7. (conflict) Conflict constraint. This is a CRF rule that adds
a factor to connect two variables: candidates that overlap
in time cannot be both true.

8. (chain) Chaining candidates on same paths. This is a
linear-chain CRF rule: candidates on a same path should
be true at same time.

9. (pos-Ngram) POS N-gram and trigram. This rule takes all
N-grams and trigrams of candidate as a feature. POS tags
are tagged for each word independently with a one-best
tagger, without sentence structure. (N=2,3,5)

4.2.2. Experiments Protocol

We increment features and observe impact for each feature.
We start from unigram frequency, then add bigram frequency

and trigram frequency. Then we try using only the “confirm”
feature, adding start-end feature onto it, adding unigrams and
bigrams, then adding bigram-silence, bigram-stopword, and
bigram-bag (features get more and more sparse). We further
add conflict rule and “chain” rule. At last we add larger language
models like bags of word 1grams, POS 5grams, and stop word
trigrams.

4.2.3. Experiment results

We report the observed word error rate (WER) and sentence error
rate (SER) in Figure 5.

Specifically, we take the following lessons:

(1) Unigram frequency itself does not work, since most ASR
softwares tries to give valid words in dictionary.

(2) 1/2/3gram frequency feature (WER 22.3%) is not as good
as “confirm” feature alone (WER 13.6%). This indicates
that a weak language model is not as competitive as a
good second-confirmatory system (ensemble wins).

(3) Sparse bag-of-Ngram feature helps. By adding feature
bigram-silence, bigram-stopword and bigram-bag in-
crementally, we observe continuous decrease in WER
(11.3%, 10.8%, 10.1%). This indicates that our system is
able to make reasonable regularization and handle spar-
sity well.
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Figure 5: Feature Exploration Results

(4) The “conflict” constraint decreases WER, but increases
SER; while the “chain” constraint increases WER, but
decreases SER.

(5) The larger language model we feed DeepSpeech, the
better results it gets. When we feed stopword trigram and
POS 5gram, it gets WER of only 9.1%.

5. Future Work
In the future, we will continue integrating more knowledge into
DeepSpeech, including high level features like coreferences,
dependency paths and knowledge base, and also integrate low-
level acoustic features.

We will further look into candidate generation with high-
level knowledge. For now we still treat the decoding problem as
a classification problem, which is picking from existing candi-
dates. However with linguistic, contextual and knowledge-base
knowledge, we might be able to generate new candidates into
the lattice, and this might enable us to beat oracle error rate.

It would be also interesting to ensemble different speech
recognition systems to obtain larger lattices, and try to learn a
model that aggregates different systems and enables inter-system
corrections.

6. Conclusion
We present a model and a system that is able to integrate different
levels of knowledge to decode word lattices generated by ASR
systems.

Our model is word-level conditional random fields, where
word candidates are variables and features and domain-specific
rules are factors. To obtain word-level training data in the factor
graph, we distantly supervise the system by matching lattice
words to transcripts, and label matched words on all best paths
as true (others as false). Statistical learning and inference on
these factor graphs give us rigorous probabilities that we can use
to find best paths as outputs.

We present a system DeepSpeech that implements the above
model. Our system is built on a scalable inference engine Deep-
Dive, and is able to train and test on 400-hour speech data within
70 minutes.
We propose to improve and release the system, with which devel-
opers will be able to add their own linguistic features easily, and
conduct advanced decoding on their own datasets in real time.

We conduct experiments to evaluate DeepSpeech and ex-
plore different features. Evaluating with 150K broadcast news

lattices, we get WER of 10.2% where the baseline Attila system
gets WER up to 22.9%.

In our study of different features, we have several insights
including (1) word unigram and POS features does not help
much; (2) a second confirmatory decoding system works better
than a word-Ngram based language model; (3) DeepSpeech is
able to utilize very sparse bag-of-Ngram features; (4) some CRF
rules has different impact on WER and SER.

In the future we will release DeepSpeech system, integrate
more high-level knowledge to approach oracle WER, study can-
didate generation methods to go over oracle WER, and try an
ensemble system of different speech engines.
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data system for feature engineering. In CIDR, 2013.

[2] L. R. Bahl, F. Jelinek, and R. Mercer. A maximum likelihood
approach to continuous speech recognition. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, (2):179–190, 1983.

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-
trained deep neural networks for large-vocabulary speech recogni-
tion. Audio, Speech, and Language Processing, IEEE Transactions
on, 20(1):30–42, 2012.

[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups. Signal Processing Magazine,
IEEE, 29(6):82–97, 2012.

[5] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision
for relation extraction without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing
of the AFNLP: Volume 2-Volume 2, pages 1003–1011. Association
for Computational Linguistics, 2009.

[6] C. Ré. Deepdive, by hazy research group. http://deepdive.
stanford.edu/.

[7] M. Richardson and P. Domingos. Markov logic networks. Machine
learning, 62(1-2):107–136, 2006.
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